Understanding Transcriptional Regulatory Redundancy by Learnable Global Subset Perturbations Presented at the ACML 2024

Junhao Liu^{1,#} Siwei Xu^{1,#} Dylan Riffle³ Ziheng Duan¹ Martin Renqiang Min² Jing Zhang^{1,*}

 $\label{eq:linear} \begin{array}{c} ^{1} \text{University of California, Irvine} & ^{2} \text{NEC Laboratories America} & ^{3} \text{Cornell University} \\ \\ \overset{\#}{=} \text{Equal Contributions} & ^{*} \text{Corresponding Author} \end{array}$

December 12, 2024

Experiment Results

Conclusion 0000

Table of Contents

Introduction & Motivation

2 Methodology

3 Experiment Results

Experiment Results

Table of Contents

Introduction & Motivation

Methodology

3 Experiment Results

Cis-Regulatory Elements (CREs) are regions of DNA that regulates the expression of genes

- CREs is crucial for numerous biological functions, with its disruption potentially leading to various diseases
- CREs often exhibit redundancy, allowing them to compensate for each other in response to external disturbances
- Single-cell sequencing technologies offer researchers an opportunity to understand this regulatory redundancy

Notations

ATAC-seq $\mathbf{x} \in \{0,1\}^{d_a}$ ($d_a > 120k$), where each dimension of this vector indicates the peak state in chromosomes

RNA-seq $\mathbf{y} \in \mathbb{R}^{d_r}$, gene expression values regulated by the ATAC-seq

Cis-Regulatory Elements (CREs) are regions of DNA that regulates the expression of genes

- CREs is crucial for numerous biological functions, with its disruption potentially leading to various diseases
- CREs often exhibit redundancy, allowing them to compensate for each other in response to external disturbances
- Single-cell sequencing technologies offer researchers an opportunity to understand this regulatory redundancy

Notations

ATAC-seq $\mathbf{x} \in \{0,1\}^{d_a}$ ($d_a > 120k$), where each dimension of this vector indicates the peak state in chromosomes

RNA-seq $\mathbf{y} \in \mathbb{R}^{d_r}$, gene expression values regulated by the ATAC-seq

Cis-Regulatory Elements (CREs) are regions of DNA that regulates the expression of genes

- CREs is crucial for numerous biological functions, with its disruption potentially leading to various diseases
- CREs often exhibit redundancy, allowing them to compensate for each other in response to external disturbances
- Single-cell sequencing technologies offer researchers an opportunity to understand this regulatory redundancy

Notations

ATAC-seq $\mathbf{x} \in \{0,1\}^{d_a}$ ($d_a > 120k$), where each dimension of this vector indicates the peak state in chromosomes

RNA-seq $\mathbf{y} \in \mathbb{R}^{d_r}$, gene expression values regulated by the ATAC-seq

Cis-Regulatory Elements (CREs) are regions of DNA that regulates the expression of genes

- CREs is crucial for numerous biological functions, with its disruption potentially leading to various diseases
- CREs often exhibit redundancy, allowing them to compensate for each other in response to external disturbances
- Single-cell sequencing technologies offer researchers an opportunity to understand this regulatory redundancy

Notations

ATAC-seq $\mathbf{x} \in \{0,1\}^{d_s}$ ($d_s > 120k$), where each dimension of this vector indicates the peak state in chromosomes

RNA-seq $\mathbf{y} \in \mathbb{R}^{d_r}$, gene expression values regulated by the ATAC-seq

Cis-Regulatory Elements (CREs) are regions of DNA that regulates the expression of genes

- CREs is crucial for numerous biological functions, with its disruption potentially leading to various diseases
- CREs often exhibit redundancy, allowing them to compensate for each other in response to external disturbances
- Single-cell sequencing technologies offer researchers an opportunity to understand this regulatory redundancy

Notations

ATAC-seq $\mathbf{x} \in \{0,1\}^{d_a}$ ($d_a > 120k$), where each dimension of this vector indicates the peak state in chromosomes

 $\mathsf{RNA}\text{-}\mathsf{seq}~\mathbf{y} \in \mathbb{R}^{d_r}$, gene expression values regulated by the ATAC-seq

Regulatory Redundancy Problem Given a target gene in **y**, what combinations of entries in **x** are regulating the expression of the target gene.

Examples

Let's say we have 4 cells, and a global removal is applied.

Challenges

• The complex gene regulatory process function \mathcal{F} is an indifferentiable black box

- The combinatorial effect of multiple CREs is important but has been ignored by most previous methods
- x is sparse, discrete, and high-dimension. The combinatorial solution space of subset(x) is vast, which means brute-force search is intractable
- In this work, we propose GRIDS to solve the above challenges

Regulatory Redundancy Problem Given a target gene in **y**, what combinations of entries in **x** are regulating the expression of the target gene.

Examples

Let's say we have 4 cells, and a global removal is applied.

X =	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	· · · · · · ·	1 0	0 1	F	0.7 0.1	$\stackrel{\rm After}{\Longrightarrow} \tilde{X} =$			0	$\stackrel{\mathcal{F}}{\Longrightarrow} \tilde{\mathbf{Y}} =$	0.7
	1		0	0	$\Rightarrow \mathbf{Y} =$	2.2		1				
	[0	• • •	1	1		0.9				1		0.9

Challenges

• The complex gene regulatory process function \mathcal{F} is an indifferentiable black box

- The combinatorial effect of multiple CREs is important but has been ignored by most previous methods
- x is sparse, discrete, and high-dimension. The combinatorial solution space of subset(x) is vast, which means brute-force search is intractable
- In this work, we propose GRIDS to solve the above challenges

Regulatory Redundancy Problem Given a target gene in **y**, what combinations of entries in **x** are regulating the expression of the target gene.

Examples

Let's say we have 4 cells, and a global removal is applied.

X =	1 0 1 0	 1 0 0 1	0 1 0 1	$\stackrel{\mathcal{F}}{\Longrightarrow} \mathbf{Y} =$	0.7 0.1 2.2 0.9	$\stackrel{\rm After}{\Longrightarrow} \tilde{\bm{X}} =$	0 0 1 0	· · · · · · · · · · ·	0 0 0	0 1 0 1	$\stackrel{\mathcal{F}}{\Longrightarrow} \tilde{\mathbf{Y}} =$	0.7 0.1 <mark>0.6</mark> ↓ 0.9	
	Γu	 T	ŢŢ	L	0.9		Lo		0	ŢŢ		0.9	

Challenges

• The complex gene regulatory process function \mathcal{F} is an indifferentiable black box

- The combinatorial effect of multiple CREs is important but has been ignored by most previous methods
- x is sparse, discrete, and high-dimension. The combinatorial solution space of subset(x) is vast, which means brute-force search is intractable
- In this work, we propose GRIDS to solve the above challenges

Regulatory Redundancy Problem Given a target gene in **y**, what combinations of entries in **x** are regulating the expression of the target gene.

Examples

Let's say we have 4 cells, and a global removal is applied.

$$\mathbf{X} = \begin{bmatrix} 1 & \cdots & 1 & 0 \\ 0 & \cdots & 0 & 1 \\ 1 & \cdots & 0 & 0 \\ 0 & \cdots & 1 & 1 \end{bmatrix} \xrightarrow{\mathcal{F}} \mathbf{Y} = \begin{bmatrix} 0.7 \\ 0.1 \\ 2.2 \\ 0.9 \end{bmatrix} \xrightarrow{\text{After}} \tilde{\mathbf{X}} = \begin{bmatrix} 0 & \cdots & 0 & 0 \\ 0 & \cdots & 0 & 1 \\ 1 & \cdots & 0 & 0 \\ 0 & \cdots & 0 & 1 \end{bmatrix} \xrightarrow{\mathcal{F}} \tilde{\mathbf{Y}} = \begin{bmatrix} 0.7 \\ 0.1 \\ 0.6 \downarrow \\ 0.9 \end{bmatrix}$$

Challenges

- \blacksquare The complex gene regulatory process function ${\mathcal F}$ is an indifferentiable black box
- The combinatorial effect of multiple CREs is important but has been ignored by most previous methods
- x is sparse, discrete, and high-dimension. The combinatorial solution space of subset(x) is vast, which means brute-force search is intractable
- In this work, we propose GRIDS to solve the above challenges

Regulatory Redundancy Problem Given a target gene in **y**, what combinations of entries in **x** are regulating the expression of the target gene.

Examples

Let's say we have 4 cells, and a global removal is applied.

$$\mathbf{X} = \begin{bmatrix} 1 & \cdots & 1 & 0 \\ 0 & \cdots & 0 & 1 \\ 1 & \cdots & 0 & 0 \\ 0 & \cdots & 1 & 1 \end{bmatrix} \xrightarrow{\mathcal{F}} \mathbf{Y} = \begin{bmatrix} 0.7 \\ 0.1 \\ 2.2 \\ 0.9 \end{bmatrix} \xrightarrow{\text{After}} \tilde{\mathbf{X}} = \begin{bmatrix} 0 & \cdots & 0 & 0 \\ 0 & \cdots & 0 & 1 \\ 1 & \cdots & 0 & 0 \\ 0 & \cdots & 0 & 1 \end{bmatrix} \xrightarrow{\mathcal{F}} \tilde{\mathbf{Y}} = \begin{bmatrix} 0.7 \\ 0.1 \\ 0.6 \downarrow \\ 0.9 \end{bmatrix}$$

Challenges

- \blacksquare The complex gene regulatory process function ${\mathcal F}$ is an indifferentiable black box
- The combinatorial effect of multiple CREs is important but has been ignored by most previous methods
- x is sparse, discrete, and high-dimension. The combinatorial solution space of subset(x) is vast, which means brute-force search is intractable
- In this work, we propose GRIDS to solve the above challenges

Experiment Results

Conclusion 0000

Table of Contents

Introduction & Motivation

2 Methodology

B Experiment Results

GRIDS: Build A Differentiable Surrogate $\hat{\mathcal{F}}$ with Neural Network

We train a differentiable surrogate $\hat{\mathcal{F}}$ to mimic the black-box \mathcal{F}

- $\hat{\mathcal{F}}$ can predict the transcriptional regulatory process (an emulator to the black-box regulatory function \mathcal{F}).

$$\mathbf{y} = \hat{\mathcal{F}}(\mathbf{x})$$

Figure: Deep Learning and the Natural Sciences: A Perfect Marriage?

Questions

lacksquare It requires an accurate surrogate model $\hat{\mathcal{F}}$ to \mathcal{F}

Can we understand the transcriptional regulatory redundancy problem by interpreting the surrogate $\hat{\mathcal{F}}$?

GRIDS: Build A Differentiable Surrogate $\hat{\mathcal{F}}$ with Neural Network

We train a differentiable surrogate $\hat{\mathcal{F}}$ to mimic the black-box \mathcal{F}

- $\hat{\mathcal{F}}$ can predict the transcriptional regulatory process (an emulator to the black-box regulatory function \mathcal{F}).

$$\mathbf{y} = \hat{\mathcal{F}}(\mathbf{x})$$

Figure: Deep Learning and the Natural Sciences: A Perfect Marriage?

Questions

- \blacksquare It requires an accurate surrogate model $\hat{\mathcal{F}}$ to \mathcal{F}
- Can we understand the transcriptional regulatory redundancy problem by interpreting the surrogate $\hat{\mathcal{F}}$?

GRIDS: Cross-modality Surrogate Mapping $\hat{\mathcal{F}}$

• $\hat{\mathcal{F}}$ modeled by Auto-encoders

$$\boldsymbol{h}_a^{(i)} = f_{\mathrm{Enc}}^a(\boldsymbol{\mathsf{W}}_{\mathrm{Emb}}^a(\boldsymbol{x}^{(i)})), \ \boldsymbol{h}_r^{(i)} = f_{\mathrm{Enc}}^r(\boldsymbol{\mathsf{W}}_{\mathrm{Emb}}^r(\boldsymbol{y}^{(i)}))$$

 Learn a joint embedding space to align RNA and ATAC sequences by adversarial training

$$\tilde{\mathbf{h}}_r^{(i)} = f_{\mathrm{AR}}(\mathbf{h}_a^{(i)}), \ \tilde{\mathbf{h}}_a^{(i)} = f_{\mathrm{RA}}(\mathbf{h}_r^{(i)})$$

• Enables cross-modality generations (e.g. ATAC-seq \rightarrow RNA-seq)

GRIDS: Cross-modality Surrogate Mapping $\hat{\mathcal{F}}$

• $\hat{\mathcal{F}}$ modeled by Auto-encoders

$$\mathbf{h}_a^{(i)} = f_{\mathrm{Enc}}^a(\mathbf{W}_{\mathrm{Emb}}^a(\mathbf{x}^{(i)})), \ \mathbf{h}_r^{(i)} = f_{\mathrm{Enc}}^r(\mathbf{W}_{\mathrm{Emb}}^r(\mathbf{y}^{(i)}))$$

• Learn a joint embedding space to align RNA and ATAC sequences by adversarial training

$$\tilde{\mathbf{h}}_{r}^{(i)} = f_{\mathrm{AR}}(\mathbf{h}_{a}^{(i)}), \ \tilde{\mathbf{h}}_{a}^{(i)} = f_{\mathrm{RA}}(\mathbf{h}_{r}^{(i)})$$

 \blacksquare Enables cross-modality generations (e.g. ATAC-seq \rightarrow RNA-seq)

Use global feature explanation to understand regulatory redundancy

- Feature Explanation explains the reason of decision made by the model through adding perturbations on inputs
- Given a target gene in y, how to use global explanation to find a subset r of k indices out of the entire dimension of x?
- Local Feature Explanation seeks to explain individual predictions
 - Instance-wise explanation
- Global Feature Explanation seeks to characterize a model's decisions across a population of instances
 - MNIST example (flip model predictions from 8 to 3)

Use global feature explanation to understand regulatory redundancy

- Feature Explanation explains the reason of decision made by the model through adding perturbations on inputs
- Given a target gene in y, how to use global explanation to find a subset r of k indices out of the entire dimension of x?
- Local Feature Explanation seeks to explain individual predictions
 - Instance-wise explanation
- Global Feature Explanation seeks to characterize a model's decisions across a population of instances
 - MNIST example (flip model predictions from 8 to 3)

Could cons of
$$h_{\lambda}(z)$$
 Image
Super pixels $\xrightarrow{h_{\lambda}(z)}$ Image
 $\xrightarrow{set} \underbrace{set}_{\frac{set}{1} + \frac{set}{1}}$

Instance x

5p1 5p2 5p

Use global feature explanation to understand regulatory redundancy

- Feature Explanation explains the reason of decision made by the model through adding perturbations on inputs
- Given a target gene in y, how to use global explanation to find a subset r of k indices out of the entire dimension of x?
- Local Feature Explanation seeks to explain individual predictions
 - Instance-wise explanation
- Global Feature Explanation seeks to characterize a model's decisions across a population of instances
 - MNIST example (flip model predictions from 8 to 3)

$$\begin{array}{c|c} Caulitions of h_{n}(z) \\ super pixels \\ h_{n}(z) \\ h_{n}($$

Use global feature explanation to understand regulatory redundancy

- Feature Explanation explains the reason of decision made by the model through adding perturbations on inputs
- Given a target gene in y, how to use global explanation to find a subset r of k indices out of the entire dimension of x?
- Local Feature Explanation seeks to explain individual predictions
 - Instance-wise explanation
- Global Feature Explanation seeks to characterize a model's decisions across a population of instances
 - MNIST example (flip model predictions from 8 to 3)

GRIDS: Finding Global Subset Perturbations by End-to-End Learning

Directly applying pervious global feature explanation method is challenging

- ATAC-seq x is sparse, discrete, and high-dimension
- Finding a combinatorial subset is too vast to be computationally tractable

Our solution: a global explanation method capable of performing end-to-end training on discrete data

- Optimize over dataset
- Utilize auto-differentiaion
- A unified perturbation operator
 - To make replacement operations be directly optimized as a continuous variable
 - Can be easily extended to different perturbation forms

GRIDS: Finding Global Subset Perturbations by End-to-End Learning

Directly applying pervious global feature explanation method is challenging

- ATAC-seq x is sparse, discrete, and high-dimension
- Finding a combinatorial subset is too vast to be computationally tractable

Our solution: a global explanation method capable of performing end-to-end training on discrete data

- Optimize over dataset
- Utilize auto-differentiaion
- A unified perturbation operator
 - To make replacement operations be directly optimized as a continuous variable
 - Can be easily extended to different perturbation forms

GRIDS: Finding Global Subset Perturbations by End-to-End Learning

Directly applying pervious global feature explanation method is challenging

- ATAC-seq x is sparse, discrete, and high-dimension
- Finding a combinatorial subset is too vast to be computationally tractable

Our solution: a global explanation method capable of performing end-to-end training on discrete data

- Optimize over dataset
- Utilize auto-differentiaion
- A unified perturbation operator
 - To make replacement operations be directly optimized as a continuous variable
 - Can be easily extended to different perturbation forms

GRIDS: Understanding Transcription via Global Feature Explanation

Global Explanation Measurement

How much a model's performance degrades over observed samples when features are perturbed

$$r^* = \underset{r}{\operatorname{argmin}} \mathbb{E}_{\mathsf{c} \sim \mathcal{C}}[\mathcal{L}(\hat{\mathcal{F}}(\mathsf{x}_{\setminus r}), \mathsf{y})]$$

r a subset of L peak indices $r = \{r_1, \ldots, r_L\}$ to be perturbed

- across a population of cells ${\mathcal C}$
- solution space: $\binom{d_a}{L}$
- $\mathbf{x}_{\setminus r}$ denotes the perturbed features indicated by r (i.e. $\mathbf{x}_{\setminus r,r_j} = \mathbf{p}_{r_j}$) (special case, removing features if $\mathbf{p} = \mathbf{0}$)
 - $\ensuremath{\mathcal{L}}$ a loss measurement for expected performance degradation

Problem

The objective involves discrete operation, which is reformulated as $\mathbf{x}_{\setminus r,j} = \mathbf{x}_j + \mathbf{1}[j \in r](\mathbf{p}_j - \mathbf{x}_j)$ to enable auto-differentiation

 Introduction & Methodology
 Experiment Results

 000
 0000000
 0000000

GRIDS: Understanding Transcription via Global Feature Explanation

Global Explanation Measurement

How much a model's performance degrades over observed samples when features are perturbed

$$\mathbf{r}^* = \operatorname*{argmin}_{\mathbf{r}} \mathbb{E}_{\mathbf{c} \sim \mathcal{C}} [\mathcal{L}(\hat{\mathcal{F}}(\mathbf{x}_{\setminus \mathbf{r}}), \mathbf{y})]$$

r a subset of L peak indices $r = \{r_1, \ldots, r_L\}$ to be perturbed

- across a population of cells ${\mathcal C}$
- solution space: $\begin{pmatrix} d_a \\ L \end{pmatrix}$
- $\mathbf{x}_{\setminus r}$ denotes the perturbed features indicated by r (i.e, $\mathbf{x}_{\setminus r,r_j} = \mathbf{p}_{r_j}$) (special case, removing features if $\mathbf{p} = \mathbf{0}$)
 - $\ensuremath{\mathcal{L}}$ a loss measurement for expected performance degradation

Problem

The objective involves discrete operation, which is reformulated as $\mathbf{x}_{\setminus r,j} = \mathbf{x}_j + \mathbf{1}[j \in r](\mathbf{p}_j - \mathbf{x}_j)$ to enable auto-differentiation

Methodology 0000000

GRIDS: Understanding Transcription via Global Feature Explanation

Global Explanation Measurement

How much a model's performance degrades over observed samples when features are perturbed

$$m{r}^* = \operatorname*{argmin}_{m{r}} \mathbb{E}_{m{c} \sim \mathcal{C}} [\mathcal{L}(\hat{\mathcal{F}}(m{x}_{ackslash r}), m{y})]$$

- **r** a subset of L peak indices $\mathbf{r} = \{r_1, \ldots, r_L\}$ to be perturbed
 - across a population of cells C
 - solution space: $\begin{pmatrix} d_a \\ l \end{pmatrix}$
- $\mathbf{x}_{\mathbf{x}}$ denotes the perturbed features indicated by \mathbf{r} (i.e., $\mathbf{x}_{\mathbf{x}_i} = \mathbf{p}_{r_i}$) (special case, removing features if $\mathbf{p} = \mathbf{0}$)
 - $\mathcal L$ a loss measurement for expected performance degradation

The objective involves discrete operation, which is reformulated as

 Introduction & Methodology
 Experim

 000
 00000●0
 00000

GRIDS: Understanding Transcription via Global Feature Explanation

Global Explanation Measurement

How much a model's performance degrades over observed samples when features are perturbed

$$m{r}^* = \operatorname*{argmin}_{m{r}} \mathbb{E}_{m{c} \sim \mathcal{C}} [\mathcal{L}(\hat{\mathcal{F}}(m{x}_{ackslash r}), m{y})]$$

- r a subset of L peak indices $r = \{r_1, \ldots, r_L\}$ to be perturbed
 - across a population of cells $\ensuremath{\mathcal{C}}$
 - solution space: $\begin{pmatrix} d_a \\ L \end{pmatrix}$
- $\mathbf{x}_{\setminus r}$ denotes the perturbed features indicated by r (i.e., $\mathbf{x}_{\setminus r,r_j} = \mathbf{p}_{r_j}$) (special case, removing features if $\mathbf{p} = \mathbf{0}$)
 - $\ensuremath{\mathcal{L}}$ a loss measurement for expected performance degradation

Problem

The objective involves discrete operation, which is reformulated as $\mathbf{x}_{\setminus r,j} = \mathbf{x}_j + \mathbf{1}[j \in \mathbf{r}](\mathbf{p}_j - \mathbf{x}_j)$ to enable auto-differentiation

Subset Transition Matrix for Gradient Estimation

gradient w.r.t the input embedding

$$\mathbf{G} = \partial \mathbb{E}_{\mathbf{c} \sim \mathcal{C}}[\mathcal{L}(\hat{\mathcal{F}}(\mathbf{x}_{\backslash \mathbf{r}}), \mathbf{y})] / \partial \mathbf{W}^{a}_{\mathrm{Emb}}(\mathbf{x}_{\backslash \mathbf{r}})$$

- construct the transition matrix $\mathbf{T} \in \mathbb{R}^{L \times d_a}$ via first-order approximation
- **T**_{*i*,*j*} in the matrix represents the advantage value of transitioning from replacing the previous index r_i with the new index j

$$\mathbf{d}_{j} = \mathbf{G}_{j} \cdot (\mathbf{W}_{\text{Emb}}^{a}(\mathbf{p})_{j} - \mathbf{W}_{\text{Emb}}^{a}(\mathbf{x})_{j})$$
$$\mathbf{T}_{i,j} = \mathbf{I}[j \notin \mathbf{r}] \mathbf{d}_{j} - \mathbf{I}[j \neq r_{i}] \mathbf{d}_{r_{i}}$$

- Coordinate descent method for updating the subset with one element at a time
- Need to implement a custom PyTorch optimizer

Subset Transition Matrix for Gradient Estimation

gradient w.r.t the input embedding

$$\mathbf{G} = \partial \mathbb{E}_{\mathbf{c} \sim \mathcal{C}}[\mathcal{L}(\hat{\mathcal{F}}(\mathbf{x}_{\backslash \mathbf{r}}), \mathbf{y})] / \partial \mathbf{W}_{\mathrm{Emb}}^{\mathtt{a}}(\mathbf{x}_{\backslash \mathbf{r}})$$

• construct the transition matrix $\mathbf{T} \in \mathbb{R}^{L \times d_a}$ via first-order approximation

T_{*i*,*j*} in the matrix represents the advantage value of transitioning from replacing the previous index r_i with the new index j

$$\mathbf{d}_j = \mathbf{G}_j \cdot (\mathbf{W}^a_{\mathrm{Emb}}(\mathbf{p})_j - \mathbf{W}^a_{\mathrm{Emb}}(\mathbf{x})_j)$$
$$\mathbf{T}_{i,j} = \mathbf{1}[j \notin \mathbf{r}] \mathbf{d}_j - \mathbf{1}[j \neq r_i] \mathbf{d}_{r_i}$$

- Coordinate descent method for updating the subset with one element at a time
- Need to implement a custom PyTorch optimizer

Subset Transition Matrix for Gradient Estimation

gradient w.r.t the input embedding

$$\mathbf{G} = \partial \mathbb{E}_{\mathbf{c} \sim \mathcal{C}} [\mathcal{L}(\hat{\mathcal{F}}(\mathbf{x}_{\backslash r}), \mathbf{y})] / \partial \mathbf{W}^{\mathsf{a}}_{\mathrm{Emb}}(\mathbf{x}_{\backslash r})$$

- construct the transition matrix $\mathbf{T} \in \mathbb{R}^{L \times d_a}$ via first-order approximation
- **T**_{*i*,*j*} in the matrix represents the advantage value of transitioning from replacing the previous index *r*_{*i*} with the new index *j*

$$\begin{split} \mathbf{d}_j &= \mathbf{G}_j \cdot (\mathbf{W}^a_{\mathrm{Emb}}(\mathbf{p})_j - \mathbf{W}^a_{\mathrm{Emb}}(\mathbf{x})_j) \\ \mathbf{T}_{i,j} &= \mathbf{1}[j \notin r] \mathbf{d}_j - \mathbf{1}[j \neq r_i] \mathbf{d}_{r_i} \end{split}$$

- Coordinate descent method for updating the subset with one element at a time
- Need to implement a custom PyTorch optimizer

Subset Transition Matrix for Gradient Estimation

gradient w.r.t the input embedding

$$\mathbf{G} = \partial \mathbb{E}_{\mathbf{c} \sim \mathcal{C}} [\mathcal{L}(\hat{\mathcal{F}}(\mathbf{x}_{\backslash r}), \mathbf{y})] / \partial \mathbf{W}^{\mathsf{a}}_{\mathrm{Emb}}(\mathbf{x}_{\backslash r})$$

- construct the transition matrix $\mathbf{T} \in \mathbb{R}^{L \times d_a}$ via first-order approximation
- **T**_{*i*,*j*} in the matrix represents the advantage value of transitioning from replacing the previous index *r*_{*i*} with the new index *j*

$$\mathbf{d}_j = \mathbf{G}_j \cdot (\mathbf{W}^a_{\text{Emb}}(\mathbf{p})_j - \mathbf{W}^a_{\text{Emb}}(\mathbf{x})_j)$$
$$\mathbf{T}_{i,j} = \mathbf{1}[j \notin \mathbf{r}] \mathbf{d}_j - \mathbf{1}[j \neq r_i] \mathbf{d}_{r_i}$$

- Coordinate descent method for updating the subset with one element at a time
- Need to implement a custom PyTorch optimizer

Experiment Results

Conclusion 0000

Table of Contents

Introduction & Motivation

Methodology

3 Experiment Results

Datasets & Experimental Setup

- MNIST Dataset To find combinatorial effects found by GRIDS, we conducted experiments on the binary digit classification using MNIST as a start, to better explain our idea.
 - Flip model predictions from 8 to 3
- Real Single-cell Dataset We curated a set of deeply-sequenced single-cell multi-modal data from postmortem human pre-frontal cortex (PFC).

10,266 cells with 8 different cell types

Demo Experiments on MNIST with GRIDS

Experiment Setup and Results

- A pretrained binary classifier (8 vs. 3) that achieves 97.9% accuracy over the test set
- Flip prediction from 8 to 3 by masking L = 64 the most important pixels (i.e., p = 0)
- GRIDS achieves a combinatorial pattern similar to that of SAGE

Apply perturbations to ATAC-seq **x**

The pixel here is analogous to the binary entry in the ATAC-seq x, while the binary classifier corresponds to the surrogate $\hat{\mathcal{F}}$

Demo Experiments on MNIST with GRIDS

Experiment Setup and Results

- A pretrained binary classifier (8 vs. 3) that achieves 97.9% accuracy over the test set
- Flip prediction from 8 to 3 by masking L = 64 the most important pixels (i.e., p = 0)
- GRIDS achieves a combinatorial pattern similar to that of SAGE

Apply perturbations to ATAC-seq **x**

The pixel here is analogous to the binary entry in the ATAC-seq x, while the binary classifier corresponds to the surrogate $\hat{\mathcal{F}}$

Demo Experiments on MNIST with GRIDS

Experiment Setup and Results

- A pretrained binary classifier (8 vs. 3) that achieves 97.9% accuracy over the test set
- Flip prediction from 8 to 3 by masking L = 64 the most important pixels (i.e., p = 0)
- GRIDS achieves a combinatorial pattern similar to that of SAGE

Apply perturbations to ATAC-seq x

The pixel here is analogous to the binary entry in the ATAC-seq x, while the binary classifier corresponds to the surrogate $\hat{\mathcal{F}}$

The Surrogate Model $\hat{\mathcal{F}}$ Accurately Models the ATAC-to-RNA Relationship

- Comparing the mean expressions between cell types and between the observed and translated cohort
- The averaged expression change (Avg. Δ) and the ratio of expression change against the original value (Rel. Δ)
- The predicted marker gene expression with actual values are pretty same
- UMAP of four key marker genes also similar

The Surrogate Model $\hat{\mathcal{F}}$ Accurately Models the ATAC-to-RNA Relationship

- Comparing the mean expressions between cell types and between the observed and translated cohort
- The averaged expression change (Avg. Δ) and the ratio of expression change against the original value (Rel. Δ)
- The predicted marker gene expression with actual values are pretty same
- UMAP of four key marker genes also similar

GRIDS consistently outperforms all baselines across each cell type on finding global explanations

- Learning global perturbations for specific marker gene of each cell type
- Among all the model, GRIDS achieves worst avg, which means it can find important CREs

Cell	Random		Random Saliency		Smoo	SmoothGrad F		1AP	GR	IDS
Type	Avg. Δ	Rel. $\Delta(\%)$	Avg. Δ	Rel. $\Delta(\%)$	Avg. Δ	Rel. $\Delta(\%)$	Avg. Δ	Rel. $\Delta(\%)$	Avg. Δ	Rel. $\Delta(\%)$
Astro	-0.085	-0.015	-2.163	-0.601	-2.155	-0.621	-13.502	-4.254	-16.696	-5.837
Endo	-1.073	-0.138	-4.974	-0.372	-9.726	-0.995	-38.997	-9.303	-57.477	-11.816
Micro	-0.012	-0.026	-23.757	-1.545	-32.944	-2.083	-73.752	-6.248	-90.607	-7.671
OPC	+0.823	-0.087	-54.645	-2.338	-48.438	-2.067	-77.167	-6.260	-96.661	-8.256
Oligo	-0.058	+0.026	-0.558	-0.173	-0.939	-0.220	-10.917	-4.252	-16.760	-6.896
SST	+0.159	+0.080	-5.201	-2.006	-5.201	-2.006	-16.453	-5.660	-17.677	-6.365
VIP	+0.012	+0.001	-0.654	-1.189	-0.634	-1.160	-2.732	-3.797	-6.804	-7.195
Avg.	+0.016	-0.021	-12.988	-1.209	-13.519	-1.290	-30.268	-5.367	-39.103	-7.300
Astro	-1.793	-0.533	-15.511	-4.853	-18.505	-6.217	-82.565	-24.766	-100.556	-34.633
Endo	+2.554	+0.468	-46.160	-6.217	-52.383	-7.893	-252.338	-41.790	-259.920	-44.601
Micro	-9.091	-0.490	-131.512	-9.122	-145.561	-10.116	-451.210	-39.695	-470.430	-44.114
OPC	-1.848	-0.165	-193.739	-10.260	-186.235	-9.891	-415.231	-35.687	-392.326	-36.380
Oligo	-1.134	-0.211	-19.809	-6.382	-21.136	-7.630	-69.460	-28.175	-93.518	-38.982
SST	-1.681	-0.615	-33.589	-11.675	-32.275	-11.115	-86.191	-29.198	-93.772	-33.708
VIP	+0.071	+0.002	-4.014	-4.876	-3.872	-4.782	-13.054	-16.757	-19.703	-27.221
Avg.	-1.843	-0.237	-68.620	-7.618	-70.292	-8.212	-202.368	-30.787	-209.583	-36.893

GRIDS consistently outperforms all baselines across each cell type on finding global explanations

- Learning global perturbations for specific marker gene of each cell type
- Among all the model, GRIDS achieves worst avg, which means it can find important CREs

Cell	Rar	idom	Sali	Saliency		thGrad	FIN	1AP	GRIDS	
Type	Avg. Δ	Rel. $\Delta(\%)$								
Astro	-0.085	-0.015	-2.163	-0.601	-2.155	-0.621	-13.502	-4.254	-16.696	-5.837
Endo	-1.073	-0.138	-4.974	-0.372	-9.726	-0.995	-38.997	-9.303	-57.477	-11.816
Micro	-0.012	-0.026	-23.757	-1.545	-32.944	-2.083	-73.752	-6.248	-90.607	-7.671
OPC	+0.823	-0.087	-54.645	-2.338	-48.438	-2.067	-77.167	-6.260	-96.661	-8.256
Oligo	-0.058	+0.026	-0.558	-0.173	-0.939	-0.220	-10.917	-4.252	-16.760	-6.896
SST	+0.159	+0.080	-5.201	-2.006	-5.201	-2.006	-16.453	-5.660	-17.677	-6.365
VIP	+0.012	+0.001	-0.654	-1.189	-0.634	-1.160	-2.732	-3.797	-6.804	-7.195
Avg.	+0.016	-0.021	-12.988	-1.209	-13.519	-1.290	-30.268	-5.367	-39.103	-7.300
Astro	-1.793	-0.533	-15.511	-4.853	-18.505	-6.217	-82.565	-24.766	-100.556	-34.633
Endo	+2.554	+0.468	-46.160	-6.217	-52.383	-7.893	-252.338	-41.790	-259.920	-44.601
Micro	-9.091	-0.490	-131.512	-9.122	-145.561	-10.116	-451.210	-39.695	-470.430	-44.114
OPC	-1.848	-0.165	-193.739	-10.260	-186.235	-9.891	-415.231	-35.687	-392.326	-36.380
Oligo	-1.134	-0.211	-19.809	-6.382	-21.136	-7.630	-69.460	-28.175	-93.518	-38.982
SST	-1.681	-0.615	-33.589	-11.675	-32.275	-11.115	-86.191	-29.198	-93.772	-33.708
VIP	+0.071	+0.002	-4.014	-4.876	-3.872	-4.782	-13.054	-16.757	-19.703	-27.221
Avg.	-1.843	-0.237	-68.620	-7.618	-70.292	-8.212	-202.368	-30.787	-209.583	-36.893

GRIDS consistently outperforms all baselines across highly-expressed gene sets from two representative cell types

- Top 100 Highly Expressed Genes Expression Changes in VIP and Microglia by masking L important CREs
- GRIDS can also gives global explanation even with a wide range of genes

Type L		Method	Avg. Δ	Rel. Δ (%)
		Random	-0.448	-0.009
VIP-100 10		Saliency SmoothGrad	-18.822 -18.424	-0.915 -0.927
VII -100 IX	1	FIMAP	-56.469	-3.087
		GRIDS	-64.016	-3.827
		Random	-0.333	-0.008
N: 100 1		Saliency	-42.372	-1.941
Microglia-100 10	10	SmoothGrad	-44.125	-2.073
		FIMAP	-115.092	-5.803
		GRIDS –	141.339	-7.466

GRIDS consistently outperforms all baselines across highly-expressed gene sets from two representative cell types

- Top 100 Highly Expressed Genes Expression Changes in VIP and Microglia by masking L important CREs
- GRIDS can also gives global explanation even with a wide range of genes

Type L	Method	Avg. Δ	Rel. Δ (%)
	Random	-0.448	-0.009
NUD 100	Saliency	-18.822	-0.915
VIP-100 10	SmoothGrad	-18.424	-0.927
	FIMAP	-30.409	-3.087
	GRIDS	-64.016	-3.827
	Random	-0.333	-0.008
	Saliency	-42.372	-1.941
Microglia-100 10	SmoothGrad	-44.125	-2.073
	FIMAP	-115.092	-5.863
	GRIDS	-141.339	-7.466

GRIDS can identify CREs with biology insights

- Calculate CRE-to-gene distance with Soft Hit Ratio and Hit Ratio
- Soft Hit Ratio (SHR) measures how many of the reported L CREs are located in this neighborhood
- Hit Ratio (HR) calculates an exact match
- GRIDS's global explanations gives a larger percent of directly interacting CREs verified in experiments

Mathad	L =	10	L = 128			
Method	$\mathrm{HR}\uparrow$	$\mathrm{SHR}\uparrow$	$\mathrm{HR}\uparrow$	$\mathrm{SHR}\uparrow$		
Saliency	0.00	0.00	6.25	18.75		
SmoothGra	d 0.00	0.00	0.00	18.75		
FIMAP	12.50	12.50	18.75	56.25		
GRIDS	18.75	25.00	31.25	68.75		

Experiment Results

Conclusion

Table of Contents

Introduction & Motivation

Methodology

3 Experiment Results

- GRIDS uses a combination of surrogate modeling and learnable perturbations to analyze the regulatory redundancy problem.
- The findings indicate that GRIDS provides more semantically meaningful feature importance values, enabling effective analysis of regulatory redundancy across extensive genome regions.
- To our knowledge, this study is the first to integrate global feature explanations with regulatory redundancy analysis in the context of single-cell multi-modal data.
- GRIDS has the potential to significantly impact biological research.

- GRIDS uses a combination of surrogate modeling and learnable perturbations to analyze the regulatory redundancy problem.
- The findings indicate that GRIDS provides more semantically meaningful feature importance values, enabling effective analysis of regulatory redundancy across extensive genome regions.
- To our knowledge, this study is the first to integrate global feature explanations with regulatory redundancy analysis in the context of single-cell multi-modal data.
- GRIDS has the potential to significantly impact biological research.

- GRIDS uses a combination of surrogate modeling and learnable perturbations to analyze the regulatory redundancy problem.
- The findings indicate that GRIDS provides more semantically meaningful feature importance values, enabling effective analysis of regulatory redundancy across extensive genome regions.
- To our knowledge, this study is the first to integrate global feature explanations with regulatory redundancy analysis in the context of single-cell multi-modal data.
- GRIDS has the potential to significantly impact biological research.

- GRIDS uses a combination of surrogate modeling and learnable perturbations to analyze the regulatory redundancy problem.
- The findings indicate that GRIDS provides more semantically meaningful feature importance values, enabling effective analysis of regulatory redundancy across extensive genome regions.
- To our knowledge, this study is the first to integrate global feature explanations with regulatory redundancy analysis in the context of single-cell multi-modal data.
- GRIDS has the potential to significantly impact biological research.

Acknowledgments

Funding

National Institutes of Health [R01HG012572, R01NS128523]

Thanks

Prof. Jing Zhang Dr. Martin Renqiang Min Mr. Yaqi Hu

Links

Zhang Lab at UC Irvine

UCIrvine M NEC

Thanks for your listening! Q & A

Understanding Regulatory Redundancy by Learnable Global Subset Perturbations