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Introduction to GRIDS

Transcriptional regulation through cis-regulatory ele-
ments (CREs) is crucial for numerous biological func-
tions, and its disruption can potentially lead to various
diseases. It is well known that these CREs often exhibit
redundancy, enabling them to compensate for one an-
other in response to external disturbances. This under-
scores the need for methods to identify CRE sets that
collaboratively regulate gene expression effectively. To
address this:

We present GRIDS, a computational method framing
CRE dissection as a global feature explanation task.
GRIDS first builds a differentiable surrogate function
to approximate gene regulation and enable
single-cell modality translation.
It then uses learnable perturbations in a state
transition framework to provide global explanations,
efficiently exploring the feature landscape.

Preliminary of Single-Cell Data

The CRE is represented by the ATAC-seq binary vector
x ∈ {0, 1}da, where each dimension indicates a chromo-
some peak’s state (“1” for open, “0” for closed). Typi-
cally, da > 105. Gene expression (RNA-seq) regulated
by the CRE is denoted as y ∈ Rdr, where da and dr rep-
resent the number of peaks and genes, respectively. A
single-cell multi-omics dataset consists of N cells C =
{c(1), c(2), . . . , c(N)}, with each cell c(i) = (x(i), y(i)) con-
taining an ATAC-seq vector and its corresponding RNA-
seq vector. Each cell also has a label ℓ(i) ∈ {1, . . . , T}
indicating its type among T classes.

Regulatory Redundancy Problem

Gene expression is regulated by CREs through com-
plex biological processes, modeled as y = F(x), where
F(x) : Rda → Rdr. Due to high experimental costs, fre-
quent queries of the black-box function F are challeng-
ing. Regulatory redundancy dissection seeks a subset
of L peak indices r = {r1, . . . , rL} within the CRE (i.e.,
features in ATAC-seq xr ≡ {xj|j ∈ r}) that are critical
for regulating gene expression across a cell population.

Global Feature Explanations for
Regulatory Redundancy Dissection

We propose an in silico computational method
by modeling it within a global feature explanation
framework. Conventionally, global explanation is de-
fined by howmuch a model’s performance degrades
over an observed population of samples when fea-
tures are removed. In the context of regulatory re-
dundancy, the global explanation objective can be
expressed as

r∗ = argmin
r

Ec∼C[L(F(x\r), y)]

where L is a loss measurement for expected gene
expression degradation. x\r denotes the perturbed
CREs induced by r, replacing the original feature xr

with preset perturbation values p ∈ Rda.

Subset Transition Matrix for Gradient Estimation

gradient w.r.t the input embedding
G = ∂Ec∼C[L(F̂(x\r), y)]/∂Wa

Emb(x\r)
construct the transition matrix T ∈ RL×da via
first-order approximation
Ti,j represents the advantage of replacing index
ri with j

dj = Gj · (Wa
Emb(p)j − Wa

Emb(x)j)
Ti,j = 1[j /∈ r]dj − 1[j ̸= ri]dri
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Figure 1. Overview of our proposed GRIDS method. It comprises two steps: training a cross-modality surrogate
model and using a global explanation method to dissect regulatory redundancy.

Demo on MNIST

To evaluate GRIDS’s global feature importance esti-
mation, we tested its ability to identify key features
in MNIST images. A binary classification model was
trained to distinguish digits 8 and 3, achieving 97.9%
accuracy on the test set. Various explanation meth-
ods were then used to identify the top L = 64 impor-
tant pixels, masking them to zero (p = 0). All meth-
ods produced subsets of L pixels based on their im-
portance scores.
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Figure 2. An examination of the most significant
L = 64 pixels identified by various methods. Our
subset perturbation learning method can find a
similar combinatorial pattern as SAGE.

Experiment on Brain Data

We curated a set of deeply-sequenced single-cell multi-
modal data from postmortem human. We then evalu-
ated the performance of GRIDS to dissectmulti-CRE-to-
gene regulatory redundancy by generating global fea-
ture importance explanations in the high-throughput
single-cell multi-omics data. The global explanations
were learned in the training set and then evaluated its
performance on the test set.

Cell Random Saliency SmoothGrad FIMAP GRIDS
Type Avg. ∆ Rel. ∆(%) Avg. ∆ Rel. ∆(%) Avg. ∆ Rel. ∆(%) Avg. ∆ Rel. ∆(%) Avg. ∆ Rel. ∆(%)

Astro −0.085 −0.015 −2.163 −0.601 −2.155 −0.621 −13.502 −4.254 −16.696 −5.837
Endo −1.073 −0.138 −4.974 −0.372 −9.726 −0.995 −38.997 −9.303 −57.477 −11.816
Micro −0.012 −0.026 −23.757 −1.545 −32.944 −2.083 −73.752 −6.248 −90.607 −7.671
OPC +0.823 −0.087 −54.645 −2.338 −48.438 −2.067 −77.167 −6.260 −96.661 −8.256
Oligo −0.058 +0.026 −0.558 −0.173 −0.939 −0.220 −10.917 −4.252 −16.760 −6.896
SST +0.159 +0.080 −5.201 −2.006 −5.201 −2.006 −16.453 −5.660 −17.677 −6.365
VIP +0.012 +0.001 −0.654 −1.189 −0.634 −1.160 −2.732 −3.797 −6.804 −7.195
Avg. +0.016 −0.021 −12.988 −1.209 −13.519 −1.290 −30.268 −5.367 −39.103 −7.300
Astro −1.793 −0.533 −15.511 −4.853 −18.505 −6.217 −82.565 −24.766 −100.556 −34.633
Endo +2.554 +0.468 −46.160 −6.217 −52.383 −7.893 −252.338 −41.790 −259.920 −44.601
Micro −9.091 −0.490 −131.512 −9.122 −145.561 −10.116 −451.210 −39.695 −470.430 −44.114
OPC −1.848 −0.165 −193.739 −10.260 −186.235 −9.891 −415.231 −35.687 −392.326 −36.380
Oligo −1.134 −0.211 −19.809 −6.382 −21.136 −7.630 −69.460 −28.175 −93.518 −38.982
SST −1.681 −0.615 −33.589 −11.675 −32.275 −11.115 −86.191 −29.198 −93.772 −33.708
VIP +0.071 +0.002 −4.014 −4.876 −3.872 −4.782 −13.054 −16.757 −19.703 −27.221
Avg. −1.843 −0.237 −68.620 −7.618 −70.292 −8.212 −202.368 −30.787 −209.583 −36.893

Table 1. Gene-focused benchmark results by
comparing expression drops of marker genes across
all cell types (upper: L = 10, bottom: L = 128).

Experiment on Brain Data (Continued)

Type L Method Avg. ∆ Rel. ∆ (%)

VIP-100 10

Random −0.448 −0.009
Saliency −18.822 −0.915
SmoothGrad −18.424 −0.927
FIMAP −56.469 −3.087
GRIDS −64.016 −3.827

Microglia-100 10

Random −0.333 −0.008
Saliency −42.372 −1.941
SmoothGrad −44.125 −2.073
FIMAP −115.092 −5.863
GRIDS −141.339 −7.466

Table 2. Cell-type-focused benchmark results in VIP
and Microglia by comparing expression degradation
of highly expressed genes after masking CRE features
in the global explanation subset r.

Method L = 10 L = 128
HR ↑ SHR ↑ HR ↑ SHR ↑

Saliency 0.00 0.00 6.25 18.75
SmoothGrad 0.00 0.00 0.00 18.75
FIMAP 12.50 12.50 18.75 56.25

GRIDS 18.75 25.00 31.25 68.75

Table 3. The hit ratio of direct CRE-to-gene
interactions.

Highlights

We extend feature explanation techniques to
scientific discovery on single-cell data.
Through comprehensive benchmarking, GRIDS
demonstrates superior explanatory capabilities
compared to other leading methods.
Moreover, GRIDS’s global explanations reveal
intricate regulatory redundancies across cell
types and states, underscoring its potential to
advance our understanding of cellular regulation
in biological research.
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